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Abstract
Purpose – The purpose of this paper is to propose a methodology to estimate the number of records
that were omitted from a data set, and to assess its effectiveness.
Design/methodology/approach – The procedure to estimate the number of records that were
omitted from a data set is based on Benford’s law. Empirical experiments are performed to illustrate the
application of the procedure. In detail, two simulated Benford-conforming data sets are distorted and
the procedure is then used to recover the original patterns of the data sets.
Findings – The effectiveness of the procedure seems to increase with the degree of conformity of the
original data set with Benford’s law.
Practical implications – This work can be useful in auditing and economic crime detection, namely
in identifying tax evasion.
Originality/value – This work is the first to propose Benford’s law as a tool to detect data evasion.
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1. Introduction
The decisions made by economic agents are based on the disclosed and exchanged
information between them. By omitting some information from a data set (as, for
example, when some sales are unrecorded by firms), economic agents harm the
functioning of the economy. In the fiscal domain, evasion practices may lead to
decreased government revenue that could be used to raise global welfare. Also, at a
financial level, biased information may lead economic agents to invest more frequently
in undesirable projects or to neglect profitable ones.

The development of tools to audit and monitor the authenticity of high flows of
numerical information, especially those supported by information technologies, is thus
of relevance. Digital analysis, defined as the study of digits and patterns of numbers
(Nigrini and Mittermaier, 1997), has proved to be useful with this respect, as its
underlying techniques (which can be found for example in Coderre, 2009) can easily deal
with huge amounts of data, while being simple and automated.

A particular digital analysis technique consists of the application of Benford’s law
(Newcomb, 1881; Benford, 1938), which can be used to detect misbehavior of samples of
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variables from many different fields, such as economics, physics or accounting, for example.
References on the application of Benford’s law in auditing include Carlslaw (1988), Nigrini
(1994), Nigrini and Mittermaier (1997), Drake and Nigrini (2000), Nigrini (2000), Durtschi
et al. (2004), Diekmann (2007), Watrin et al. (2008), Coderre (2009) and Gomes da Silva and
Carreira (2013).

When it can be applied (see Hill, 1995, for the theoretical requirements, and Durtschi et al.,
2004, for examples of variables that must follow the law), Benford’s law states that the
probability (ei) of a number having first digit i follows a logarithmic function given by ei �
log(1 � 1/i), i � 1,…,9. This function gives also the probabilities of higher orders for the first
digits of a number, such as, for example, the first two and first three digits, in which cases
i � 10,…,99 and i � 100,…,999, respectively. Thus, by comparing the observed frequencies
of the digits of the numbers in a data set of numerical records with the expected ones
according to the law, one can obtain insights about the authenticity of the data set. Indeed,
when a divergence is found, it may be caused by fraudulent behavior of economic agents,
namely through the omission of some records from the original data set.

As no information is recorded, data evasion is harder to detect and prove than other
data manipulations. In this paper, we apply Benford’s law to deal with the problem of
detecting and measuring data evasion. In concrete, the paper proposes a procedure to
estimate the number of records that were evaded from a data set, which is a new
approach in the literature.

The paper is organized as follows. In Section 2, a baseline definition of authenticity of
a data set is presented, and in Section 3, the procedure to estimate the number of omitted
records from a data set is developed. Section 4 is devoted to the illustration of the
application of the proposed procedure and to the assessment of its effectiveness, through
an empirical experiment. Section 5 concludes the paper.

2. Benford’s law and the authenticity of a data set
To assess the conformity of a data set with Benford’s law, several conformity tests and test
statistics can be used. For example, Nigrini and Mittermaier (1997) propose the first digits
test, the second digits test, the first-two digits test, the number duplication test, the rounding
test and the last-two digits test. As test statistics for each conformity test, two of the most
common are the Chi-square statistic, which evaluates the global conformity of the data under
a conformity test, and the individual standard normally distributed Z-statistic, which
assesses the conformity of each particular digit(s) within a conformity test.

With many alternatives for analyzing the conformity of a data set with Benford’s law,
some assumptions must be made regarding the definition of authenticity of a data set. Once
having such a definition, we get a reference that allows to evaluate a given observed data set
and argue whether it is authentic. If a data set fails the definition, we assume that some
records must have been omitted from the original authentic data set and that it is possible to
recover information about the records that were omitted, as it will be explained below. When
a record is omitted from a data set, there are two effects: a direct effect decreasing the
frequencies of the digits observed by that record, and an indirect effect that increases the
observed relative frequencies of all other digits. When intentionally omitting records, it is not
reasonable to control these effects given the crossed interaction, which makes it difficult to
obtain an artificially conforming data set for the remaining records.

The omission of records in a data set may thus lead the set of remaining records to
diverge sufficiently from the law. In particular, it can cause some digits to have
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significantly lower frequencies than expected, which makes the respective digits good
guesses for the digits of the omitted records. Restoring compatibility with the law is thus
possible by adding a convenient number of records with the digits for which the
frequencies are below the expected. To know how many records to add in each of those
frequencies is however more difficult the more conformity tests are involved in
the definition of authenticity. This can be seen, for example, if we use the first digits test
together with the first-two digits test. In this case, the estimated number of omitted
records with first digit 9 should be consistent with the estimated number of omitted
records with first-two digits starting with 9.

For simplicity, we avoid the interdependencies between the tests by selecting only
the first-two digits test. We select the first-two digits test given that it is the one that
captures the most of Benford law’s logarithmic nature. Drake and Nigrini (2000)
recommend it (or alternatively the first-three digits test if the data set is over 10 000
records) to look for the spikes that signal the digits of the numbers that are more
probable to be erroneous, while suggesting that the first digits and the second digits
tests must be used only as preliminary conformity tests.

Hereafter, we thus consider the following definition of statistical authenticity of a
data set.

2.1 Assumption 1
A data set of T records with Ti records with first-two digits i is statistically authentic if it
is conforming with respect to all Z-statistics for the first-two digits test, i.e. if �Ti/T �

ei�/�ei(1 � ei)/T � Z*(�), i � 10,…, 99, where Z*(�) is the critical value for the
Z-statistics at a significance level of �.

The required degree of conformity with Benford’s law in Assumption 1 can be
adjusted with parameter �. A higher � means being more demanding when validating
the conformity of a given observed data set (small ranges for the intervals in which the
relative frequencies are conforming). Figure 1 illustrates the behavior of Benford
probabilities for each first-two digits combination (from i � 10 to i � 99) and both the

Figure 1.
Benford’s law and
conformity bounds
for � � 1 per cent
and � � 10 per cent
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upper and lower bounds for two different conformity levels of the relative frequencies of
a given data set (� � 1 per cent and � � 10 per cent).

Under Assumption 1, the distortions caused by the omission of records are
statistically significant, and thus detectable, if there is at least one observed relative
frequency outside its bounds.

3. Assessing the number of omitted records
The objective of this section is to estimate the numbers of records that must be added to
the observed data set so as to restore conformity according to Assumption 1.

Our approach is based on a mathematical programming model, which results from
what follows.

Let ni be the number of records with first-two digits i in the observed data set, and xi the
number of records with first-two digits i to add to the set of observed records. The total
number of records to be added is k� � i�10

99 xi [equation (1) in the model below]. The aim of the
addition of records is that the new data set satisfies Assumption 1, i.e. �(ni � xi)/(n � k) �

ei�/�ei(1 � ei)/(n � k) � Z*(�), i � 10,…,99 [equations (3) in the model].
As a fitness measure for the proximity between the frequencies of the new data set

and the expected ones according to Benford’s law, which are the best guesses for the
frequencies of the original authentic data set, we use the Chi-square statistic, given by
(n � k) � i�10

99 ((ni � xi)/(n � k) � ei)2/ei. This statistic constitutes the objective function of
the model.

One feature of this function is that it can always be decreased toward zero if k is
continuously increased. Of course, in real context, the number of omitted records is
limited (a small business is likely to have a lower number of omitted records than a large
business). Hence, k must be bounded [k � k�, equation (2) of the model].

In summary, the model is as follows:

Min z � (n � k) �
i�10

99 �ni � xi

n � k
� ei�2

ei

s.t.:

k � �
i�10

99

xi (1)

k � k� (2)

�ni � xi

n � k
� ei�/�ei(1 � ei)/(n � k) � Z*(�), i � 10, . . ., 99 (3)

xi � 0, integer (4)

Given that the optimal solution of the model (denoted by z*) is non-increasing with k�,
the choice of k� determines the solution. An important issue is thus how to define k�. A
lower bound for k� can be klower, the optimal value of the objective function of an
auxiliary problem, given by Min w � k s.t.: (1), (3), (4). This value is the lowest number
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of records that must be added to the observed data set so that the new data is
conforming. An upper bound for k�, kupper, higher than klower, may be a context guess
for the maximum physically possible number of omitted records. To assist the user of
the model in defining k� within these bounds, note that after a certain value of k�,
significant improvements in z can be made only at the expense of large increases in k�.
In addition, as the authentic data set may not follow exactly Benford’s law (i.e. the
relative frequencies of the authentic data set may not be exactly ei), setting a large k�

may not be the best practice. We thus increase k� from the lower bound toward the
upper bound until we observe a relatively small improvement in z*, avoiding an
overfitting of the new data set.

In detail, we suggest the following procedure to estimate the number of omitted
records (NMR). First, solve the main model under k� � klower so as to obtain the optimal
values xi*, k* and z*. Second, iteratively solve the model for larger values of k� until a
stopping condition is achieved, which is given by a sufficiently small improvement in
the value of z or by k� reaching kupper. By adopting this procedure, kref is the estimate for
the total number of omitted records:

Procedure NMR
1. solve the main model considering k� � klower and obtain z* and k*, and let kref � k*;
2. solve the main model considering k� � (k* � kupper)/2 and obtain z** and k**;
3. while (z* � z**)/(k** � k*) � 0.01 Do

Begin
Let k� � (k** � kupper)/2
Let z* � z**, k* � k** and kref � k*
Solve the main model with k� and obtain z** and k**

End

4. Empirical experiment

In this section, we conduct an empirical experiment so as to illustrate the application of
procedure NMR, considering two different degrees of conformity of the authentic data
set with Benford’s law. We thus apply the procedure over two different simulated
authentic data sets, one satisfying Assumption 1 at a significance level of 10 per cent
(strong conformity), named data set 1, and the other satisfying Assumption 1 only at a
significance level of 1 per cent (weak conformity), named data set 2. Both data sets
consist of 5,000 simulated numerical records, with the absolute frequency of first-two
digits i belonging to the interval [eiN � N.Z*(�). �ei(1�ei)/N; eiN � N.Z*(�).

�ei(1�ei)/N], where N � 5,000 and � � 10 per cent and � � 1 per cent, respectively, for
data sets 1 and 2 (see Figures 2 and 3). These sets of records, equivalent to real authentic
data sets, constitute the baseline that allows to evaluate the quality of the solutions
obtained by applying procedure NMR.

The data sets were then distorted by omitting some of their records. In detail, for each
first-two digits combination i, we omitted a random percentage (uniformly between 0
and 100 per cent) of its records. The total number of omitted records was 1,692 in data set
1 and 2,423 in data set 2, so that the distorted data sets are constituted by 3,308 and 2,577
records, respectively (see Figures 2 and 3). Both distorted data sets do not satisfy
Assumption 1 at a significance level of 1 per cent.
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Using � � 1 per cent, the lower bounds for k� are klower � 831 and klower � 2,080,
respectively, for the cases of data set 1 and data set 2[1].

In the case of data set 1, kupper was arbitrarily set equal to 2,500, while in the case of
data set 2 it was set equal to 3,500.

Table I displays the results obtained when applying procedure NMR on data set 1.
The table displays the values of k�, k*, z*, the relative gain in z*, and a measure of the
quality of the solutions (Errors), evaluated by the sum, for all i � 10,…, 99, of the
absolute difference between xi* and the respective true number of omitted records.

As it can be seen in the table, the procedure estimates that 1,612 records were
omitted (4.7 per cent below the true number of omitted records, 1,692). Comparing

Figure 2.
Results for data set 1

Figure 3.
Results for data set 2
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the new data set with the authentic data set, one finds 102 errors (6 per cent of the
true number of omitted records). The absolute frequencies for the new data set are
displayed in Figure 2. One can observe that the new data set describes well the frequencies
of the authentic data set.

Table II displays the results obtained when applying procedure NMR on data set 2.
In this case, the procedure estimates that 2,790 records were omitted (15.1 per cent above

the true number of omitted records, 2,423), implying a total of 829 errors (34.2 per cent of the
true number of omitted records). The absolute frequencies of the new data set are displayed
in Figure 3. The fitting is not as good as in the previous case so that the effectiveness of
procedure NMR is decreased in this case, particularly with respect to the number of errors.
This is because data set 2, even though authentic, does not follow so closely Benford’s law as
data set 1. This reveals the danger of overfitting the data. The effectiveness of procedure
NMR thus seems to increase with the degree of conformity of the authentic data set.

One could also be interested in evaluating the sensibility of the results to the parameter �
in the model. However, the effect of a change in � is straightforward. In detail, for example,
if � is decreased, the constraints (3) get less restrictive. Therefore, when solving the auxiliary
model, one gets a smaller klower. This implies that k� can vary within a larger interval.
Nevertheless, as procedure NMR promotes continuous increases in k�, the solution of the
model converges to stronger levels of conformity, compatible with higher �’s. Hence, there is
no reason to expect significant changes in the effectiveness of the results by increasing �.

5. Conclusions
The problem of having some economic agents omitting relevant financial, accounting or
business information harms the economy as a whole. In this paper, we proposed a procedure
that can be used to give insights about the records that were omitted from a data set.

Even though the proposed procedure gives only patterns for the first-two digits
distribution, while not properly identifying the specific omitted records, the information
provided can be useful to guide auditors in their investigations.

The methodology relies on two key assumptions. First, that there is no other data
manipulation than evasion distinguishing the authentic and the observed data sets. Second,
that an authentic data set follows Benford’s law, which is plausible for most of economic,
financial, accounting and business data. As shown in the empirical experiments, the
effectiveness of the methodology seems to increase with the degree of conformity of the true
data set with the law.

Table I.
Results for data set 1

k� k* z* (z* � z**)/(k** � k*) Errors

831 831 53.413 – 861
1,612 1,612 0.273 0.068 102
2,056 1,934 0.146 0.000 242

Table II.
Results for data set 2

k� k* z* (z* � z**)/(k** � k*) Errors

2,080 2,080 22.924 – 787
2,790 2,790 5.092 0.025 829
3,145 3,144 2.276 0.008 891
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Concerning its practical applications, procedure NMR can be useful in contexts where the
above assumptions are plausible, as for example in detecting unrecorded sales.

As for future research, it could be interesting to investigate reasonable assumptions that
would allow to deal with data evasion together with other types of data manipulation
simultaneously and introducing some randomness concerning the expected authentic
frequencies (alternatively to the consideration of deterministic ei). This last issue could
improve the effectiveness of procedure NMR in cases where the authentic data sets are
weakly conforming.

Note
1. Throughout the paper, all the models are solved using the mixed integer nonlinear

constrained optimization solvers from the NEOS platform (www.neos-server.org).
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